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Let N = r..~~ I (Ili + 1)+ r..~~ I mi and let {ui}f~ I be an extended Chebysev system.
Let Ill' 1l2, ...,llk be given odd positive integers and m l ,m2, ...,m, given even
positive integers with corresponding fixed nodes XI < X2 < ... < X, in the interval
(a, b). If L is a positive linear functional on U = span {u;}f~ l' we prove that L has a
unique representation of the form

k", [ J+.L L bijP Xl, •.• , Xt, X2, ... , Xl' ..•, x~, .." X.n 11' ..., II' "'l Ii' ••.•, Ii-- -- -- -- -.....-1=1)=1 ml m2 m s III J

such that Q(p) = L(p) for all pE U. Here a < t l < t2< ... < tk < b. The proof
combines use of the degree of a: mapping with results from the theory of divided
differences. © 1988 Academic Press, Inc.

I. INTRODUCTION

Given a positive linear functional L on an extended Chebysev system
U=span{uJ;""~l' Barrow [3] has shown that there exist unique nodes
{tJ7= 1 and coefficients {aij} such that the corresponding quadrature
formula is exact over the system; i.e., L7= 1 Lj:"-OI u(j)(t;) = L(u) for all
u E U. Here {ILi} are given odd positive integers and dim U = L7~ 1 (ILi + 1).
Such a formula is known as a Gaussian quadrature formula and has been
shown to be of maximal precision.

This paper concerns a generalization of formulas of this type. One is
allowed to initially choose points x in the interval (a, b), and given the
preassigned multiplicities of these and the free nodes, a quadrature formula
is shown to exist.

In a departure from previous quadrature formulas, the divided difference
has been used in place of derivative evaluations. This is primarily due to
the fact that it is possible for free knots to combine with fixed nodes.
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However, as has historically been the case, the free knots remain separate
from each other as in [1], [2].

The following section provides background in total positivity, divided
differences, and topological theory which will be used in the proof of the
main theorem. The last section follows the basic outline of Barrow's work
[3], proving the main result of the paper. As with the theorem of Barrow,
this formula is of maximal precision.

II. DEFINITIONS AND PRELIMINARY RESULTS

Let {Pi}~~IECN-I[a,b] form an extended Chebysev (ET) system, i.e.,

(2.1 )

Here the "*" means that if some of the t/s coincide, then the columns in
the matrix corresponding to coincident t/s are replaced by derivatives of
increasing order (see Ref. [5] for details).

A linear function L on U is said to be positive if whenever PE U is
nontrivial and nonnegative, L(p) > O. L is called nonnegative if L(p) ~ 0
whenever p ~ O. It is shown in Krein and Rutman [6] that a nonnegative
linear functional on U may be extended to a nonnegative linear functional
on C[a, b]. Hence, by the Riesz representation theorem for the dual of
C[a, b] we may assume that L(p) = J~ p(t) d<1( t) for all p E U, where <1 is a
nondecreasing right-continuous bounded function.

We now provide a brief discussion of divided differences, referring the
interested reader to Schumaker [7] for a more thorough treatment. For
the remainder of this paper we use the following definition:

Given points t I' ..., tr + 1 and a function f, define the rth-order divided
difference of f over these points by

(2.2)

Here the "*,, allows for coincident t's as in definition (2.1).
We use the special notation V( t I> .••, t r + d for the Vandermonde deter

minant D* I?'~:"'~i/ I . We have not specified the ordering of {t i }~:: as in
fact it does not matter. The recursive nature of the divided difference will be
used often, i.e., given any points {t i} ~: f, t r + 1 =F t 1 (see Ref. [4]),

(2.3 )
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The continuity of the divided difference allows for the following fact: Let
t 1 ~ t 2 ~ ... ~ tr+ I' Fix 1~ i ~ r+ 1 and suppose

...-.---......-.---.. -------
t l , ...,tr+I =TI, ..·,'t"I<'t"2, ..·,'t"2< ... <'t"d, ..·,'t"d·

Then

o
-f[tl, ...,tr+I]=l;f['t"I, ...,T1, ...,'t"i, ...,'t"i' ...,'t"d, ...,'t"d for i= 1,2,..., d.or· ---...-.... ~ -------

I II 1,+ 1 Id

(2.4 )

The correlation between the divided difference of a function and its
derivative values is often exploited. With {'t" i} 1~ 1 as above,

d I,

f[tl, ..·,tr+I]= L L CLijIJi-1f(T i),
i~ I j~ 1

(2.5)

where

1,-1

V(~, ...,~, ...,~)
CL il,=

V(tl> ..., t r + d

It is worthwhile at this point to note that the main result holds if we
replace this definition of the divided difference with the most generalized
definition (see Ref. [7, p. 81]).

The following is a discussion of the elements of topological degree theory
which will be needed:

Let D ~ R N be a bounded open set and let F: 15 -+ R N be continuous.
Then if CERN and c¢F(aD), where aD means the boundary of D, then the
degree of F with respect to D and c is defined, is an integer, and will be
denoted deg(F, D, c). We list below some of the relevant properties of
deg(F, D, c) [3].

(i) If FE C1(D) n C(15), c ¢ F(oD), and det[F(x)] :;e 0 when F(x) = c,
then there are a finite number of points XiE D where F(x;) =c. Moreover,
deg(F, D, c) = Li sgn[det[F(x i )]].

(ii) If deg (F, D, c):;e 0, there is at least one solution in D to the
equation F(x) = c.

(iii) If F:15x[O,I]-+RN is continuous ad F(x,,1,):;ec for xEaD,
o~,1, ~ 1, then deg[F( ., A.), D, c] is constant, independent of A..

We now define the concepts which are necessary for the statement of the
main theorem:
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Let Ill' 1l2, ... , Ilk be odd positive integers, ml , m 2, ..., m s even positive
integers, and let

k s

N= L (Ili+ 1)+ L mi'
i=1

Let U be an ET-system of order N and let L be a given positive linear
functional on U=span{Pi}f~I' When possible we will write

p[x, tl> ..., tl> ..., ti , ... , tJ for p[x I , ... , XI> ... , xs,· ..,x" tl ,·.., tl> ..., t i , ... , tJ----- ----- ----....- -..-.........-.....-.....-...- -....-...
iJl j mt ms .ttl j

to eliminate cumbersome notation.
Let L1 kERk be defined by L1k=={(tl>t2, ...,tk)=t:a<tl<t2<"· <

tk<b}. Let L1 k.eERk be defined by L1k,e={tEL1k:lti+l-til>t: for i=l,
2,..., k-l}. Finally, let (a, b) == (all' a12 , ..., alml , a21 , a22 , ..., a2m2 ' ..., asm,'
bll' b12 , ... , b l , b21 , ... , h2 , ... , hk ).

III 112 Ilk

III. GAUSSIAN QUADRATURE WITH FIXED NODES

This section contains the proof of the following theorem:

THEOREM 1. Let a<x I < ... xs<h, {u;}7~1 and {m;}f=1 be given as
above. Then there is a unique t E L1 k.e where t: > 0 and there is a unique
coefficient vector (a, b) such that

s mj

L(p)= L L aijp[xl, ...,xl, ...,Xi, ...,xJ
i = 1 j = 1 --;n;-- '-;--

k Ili

+ L L bijp[xI,,,,,xI,,,,,x6, ..·,x,,tl, ...,tl, ..·,ti, ..·,tJ (3.1)
-.....-.-- -.....-,.... ~ ---.....-..-

i~lj~1 ml m, /11 j

for all p E U. The proof is based upon a series of lemmas.

Note. By Proposition 1 of Barrow [3] this formula is of maximal
precision.

LEMMA 1. Let a < X 1< X 2< .,. < X s< b be fixed and let t E L1 k be given.
Then for i = 1, 2, ..., s + k we define the "generalized Lagrange polynomials"
Pij E U as follows: For i = 1,2, ..., sand j = 1, ..., m i define Pi} 6 U by

for (i,j)"# (l, n),
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where 1= 1, 2, ..., s, n = 1, ..., ml'

Pij [XI' ..., XI' ... , Xi' ..., X;] = 1------- -----ml j

and

243

Pij [x, tl> ..., t l , ••• , tl, ..., tl] =0----- -------1'1 n

for 1= 1, 2, ..., k, n = 1, ..., Ji-I+ 1.

For i=s+ 1, ..., s+k andj= 1, ..., Ji-i+ 1 define PijE U by

and

Pij[X I , •.•, XI' ... , XI' ..., xiJ =0------- -----ml n

Pij[X,~, ...,~]=o
1'1 n

for 1= 1, 2,..., s,

n= 1, ...,m l

for (i,j) =f:. (l +s, n),

1= 1, 2, ..., k,

n = 1, ..., Ji-I + 1

Pij [x, tI' ..., tI' ..., t i _ S' ... , t i _ s] = 1.----- --1'1 j

Such a polynomial can be seen to exist and be unique by writing out the
N x N matrix equation which determines it. Let

aij=L[pij(.;t)] for i=I,2, ...,s,j=I, ...,mi

bij= L[Pi+s)'; t)] for i= 1, 2, ..., k,j= 1, ..., Ji-i'

Then t and (a, b) satisfy (3.1) if and only if

for i:::::s+ 1, ..., s+k. (3.2)

Proof If (3.1) holds then by definition of Pi'l'i~I'('; t), the right-hand side
of (3.1) is identically zero for i = s + 1, ..., s +k. Thus (3.2) holds.

Conversely, if (3.2) holds, then by the definition of the remaining N
functions Pi,j, (3.1) holds for all Pi,j' As we have a basis for U in these
functions, (3.1) holds for all PE U.

DEFINITION. Fix a < r l < r2 < ... < rk < b separate from x and define
Lo(p) = :L7= I p(rJ Then for 0 ~ A. ~ 1 define LA(p) = ALo(p) + (1- A) L(p).

Remark. It is useful at this point to examine the functions
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Pi+S.Il;+I(·;t) which we redefine aSPi(·;t) for i=I,2, ...,k. By Eqs. (2.3),
(2.4), and (2.5),

and

plJ)(x,; t) = °
pF)(t,; t) =°
pF)(ti; t) =°

for 1= 1, ..., s,j=O, 1,..., m,-1

for l#i,j=O, 1, ..., /1,

for j=O, 1, ..., /1i-1

(3.3 )

III Il·+l

( 0) V(X:t:::tI' ...,~)
p/' (t i ; t) = > 0.

V(x, t1, •• " til ..., t i , .. " t i )--------- ---------III Il·

LEMMA 2. Let a < Xl < X2 < ... < Xs < b, and {m;}i~ 1 and {tl;}7= 1 be as
above. If t A and (aA, bA

) satisfy (3.1) for 0 ~ A~ 1 there exists an e > Osuch
that t AE J k. , .

Proof Assume to the contrary that no such e>°exists. Then there
exists a sequence t n s; J k such that C -+ t E ojk as n -+ 00. Without loss of
generality, we can assume that t'1-+ t2 • Denote the corresponding sequence
by {An}, so that as An -+ AoE [0, 1], t'1-+ t 1 and t'i -+ t 1 .

Construct a sequence of polynominals Pn E U such that

Pn[X I , ... , XI' ...,Xi, ..., xj ] =0,
---..--.- ---..--.-

ml j

Pn[x, t'1, ..., t'1, t7, ..., t7=0,
---..--.- ---------III j

Pn[x, t'1, ..., t'1, ..., t7, ..., tj] =0,
---..--.- ~

III j

j = 1, 2, ..., mi , i = 1, 2, ..., s

i= 1, 2,j= 1, 2, ..., J.li

i = 3, 4, ..., k, j = 1, 2, ..., /1i + 1

p~(a) > 0,

Then for each n, Pn has a full set of zeros and is completely determined.
Since tn and (aA

", bAn) give a formula (3.1) for LAn' L;jPn) = °for all n.
Define P E U by

p[X I , ••• , Xl' ... , Xi' ..., X;] =0,
~ -----mt j

p[x, til"" t l ] =0,-----j

p[x, t l , ••• , t l , ... , ti, ..., ti=O,----- ---..--.-III +1l2 j

j= 1, 2, ..., m i , i= 1, 2, ..., s

j= 1, 2, ..., /11 + /12

i=3, 4, ..., k,j= 1,2, ..., /1i+ 1.
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By continuity and Rolle's theorem, limn ~ 00 Pn = p. By construction the
zeros of P are all even and thus P ~ O. Notice that the possibility of t I = Xi

for i = 1, 2, ..., s will nevertheless produce a zero with even multiplicity.
Therefore, P > 0 and so LAO (p) > O. j

However, by construction of {Pn}, L;..(Pn) = 0 for all n. As
limn LAJPn) = LAO(p) by the continuity of LA(p), we have the desired
contradiction.

Let f; > 0 be as in Lemma 2. For tELl k," let Pi( .; t) E V be the polynomial
Pi",+I(·;t) of Lemma 1. Define the map F:Ll k ,. x[0,1]--+Rk by
Fi(t; A) = -LA[Pi('; t)] for i = 1, 2, ..., k. Then F is continuous in (t; A) and
Lemmas I and 2 imply that F(t; A):;6 0 if t E oLl k ,.'

We need the following fact in order to compute aD/at.

LEMMA 3. For 1~ m ~ k, and Pm( .; t) E U defined as above,

where t and (a, b) satisfy F(t, A)=O for 0;52;51. We define

1'1 I'm-I

V
m- V(x,~, ...,~)
0-

V(x, t l , ... , tl> ..., tm , ... , tm )

--------- ---------1'1 I'm

and
1'1 I'm-I j-------- -------- ~V(x, t l , ..., tl> ..., tm , ... , tm , ... , t i , ... , t i )Vm.= _

l.J V(x, t l , ... , t l , ... , tm , ... , tm , ... , t i , ... , t;))
--------- --------- ---------1'1 I'm j

Proof For 1~ I~ k construct Pm E U by

p~)(X;) = 0,

p~)(tJ =0,

p~)(tm)= 0,

i = 1, ..., s, j = 0, 1, ..., m i - 1

i:;6m, i= 1, ..., k,j=O, 1, ..., J.li

j=0,1,·..,J.lm- 2

p~m-I)(tm) = p~m)(tm) > 0 as defined in Lemma 1, see Eqs. (3.3),

and

If ti=xj for some i,j, replace J.li by mj + J.li'
Then by construction Phas N - 1 zeros, and as the interior zeros are all

even, Pm ~ 0 on [a, b]. We will now show that Q(Pm) is exactly (3.4),
which must be strictly positive by the nature of Pm'
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By construction Pm[xJ, ...,xl, ...,Xi, ...,xJ=O for i=I,2, ...,s and
--------- --------ml i

j = 1,2, ..., mj' Similarly for i < m,

i-I I'~-I

Pm[X,fl, ..·,fl, ..·,fj, ...,fiJ= L: L: IXp,D(I)Pm(fp)
~ '-} P~I ,~O

i-I

+. L IXi/D(I)PmU;) = 0
,~O

for i= 1, ..., J,li'

For the case i=m, by (2.2), Pm[x, fll ..., f l , ... , fm, ..., fmJ equals
--------- ---------1'1 i

1 1 .. ·0 °...... °

V(X, t 1 , ... , t 1 , ... , f m, ..., f m)
-...--....- ~

1'1 J

and equals
1'1 I'm-I

-------- --------
(

I) V(x, f 1 , ..., f 1 , ... , fm, ..., fm)PI'm- (t )--------
m m V(X,f 1 , ...,f l , •••,fm, ...,fm)

--------- ---------1'1 11m

For i> m,

1 °......
Pm[X, f 1 , ... , f 1 , ... , f i , ..., fJ =

--.-......--. -----
III j

for j= 1, ..., J,lm-1

for j=J,lm'

1 ...... 0

V(X, t1 , ... , f 1 , ..., f i , ..., fi )
--------- --------III i

for j= 1,2, ..., J,li'

Therefore as Q(Pm) = L(Pm) > 0,

k Ili j 1

Q(Pm)=bmpj(l1m- I )(tm) V:;'+ L: L: bijp(l1m-I)(fm)(-I)~;~m+ll1.+i Vij
i~m+ li~ I

>° for j = 1, 2, ..., J,li'

As p~m~-l)(tm) = p~m)(fm) > 0, the result is shown.
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LEMMA 4. If t and (a, b) satisfy F(t, A) = 0 for 0 < A~ 1, then

of
det at (t, A) > O.

247

Proof As in the work of Barrow [3] we compute the difference
quotient, omitting reference to A. The determinant definition for the divided
difference seems to give the greatest insight into this computation.

Let Ihl be small and e l = (1, 0, ..., 0) E Rk
• Then

FI(t + he l ) - F[(t) = -L;.(PI(t + hed)
m s pj

= - L L aijPI[x!>""xl, ...,xj, ... ,xj;t+hel ]
i=lj=l ~ --;-

By the definition of PI' the first set of sums is zero. We break up the
second sum at t I to obtain

1'1- 1

FI(t+ hed -FI(t) = - L bIjPI[x, t l , ..., t l ; t + he l ]------j= I j+ I

For j= 1, 2, ..., Jil,

PI [x, t I, ..., t I; t +hel]
~

j

10 o 1 ...... 0 o

I(xd··· p~m,-I)(xs)PI(t I;t +hed ...p~j-I)(tI; t +hed .

V(x, t l , ... , td)
~

j

Using Taylor's theorem we expand PI(x;t+hed about t+he l . We
define

PU-I)(t ·t+he)
A.= I I' I

J h

(-h )!ll-j
=p(l'd(t + h' t + he ) + o(hl'l-j)

1 I' I (Jil-j+l)!



248

so that

DIANE L. JOHNSON

lim PI [X, t I' ..., t I ; t + heI]
h ~ 0 --------

10 ... o ···0

We note that

V(x, t I' ... , td--------j

for j = 1, 2, ..., III - 1

for j= Ill'

For the second set of terms in the sum, we use the fact that
pF-I)(ti;t+hel)=O for j=I,2,...,lli and i,61. This leaves the only
nonzero element in the last row of the corresponding determinant of
_p(IlIl(t l ; t). Thus for i=2, ..., k andj= 1, 2, ..., Ill'

lim Phi [x, t I' ... , t I' ... , t i , ..., tj ; t + he l ]
h-O ------ ~

III j

where the sign is contributed by the placement of p~IlIl in the last row. Thus

of
_I =b p(IlIl (t . t) VIat I I~I I I' 0

k ~ . I

+" " b.p(IlIl(t ·t) VI.(-I)(I:'i::'2 1l/)+j+1L.... L.... lJ I I' lJ •
i~2j~ I

One obtains of/oti similarly for i = 2,3, ..., k. Moreover, by construction
plllj)( tj ; t) = 0 for i,6 j and therefore the ofT-diagonal elements vanish. Thus,
in light of Lemma 3, the result is shown.

LEMMA 5. Deg(F(·;O),A k ."O)=1.

Proof For the remainder of the lemma set A. to zero and delete any
further reference to A.. We follow Barrow [3] by first showing that the only
solution to F( t) = 0 is r and then show that F( t) is one-to-one for t near r.
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Then Fi(t) = -Lo(p;(.; t)) = - L:1= I Pi(r/; t). By the definition of Pi'
F(r) = 0. Suppose that there exists another solution, say s, so that F(s) = 0.
By Lemma 1 let s, a be the corresponding formula (3.1) for L o .

Then without loss of generality we assume that r I # 5 I and construct
p E U as follows:

p[X I , ..., XI' ... , Xi' ..., Xi] =0,--------- --------ml j

p[x, 51, ... , 51' ... , 5 i , ..., 5,.] = 0,
~~

111 j

p(ri) =°
p(rd#O.

i= 1, ..., 5,j= 1, 2, ..., m i

i= 1, 2, ..., k,j= 1, 2, ..., Jli

i= 2,3, ..., k

Then by (3.1), Lo(p) =0, but Lo(p) =p(r I) # 0, a contradiction.
Therefore r l =51and similarly one shows r=s. We now compute of/ot for
t near r to show that F is one-to-one near r.

For t near r, letting h = '/- tl>

k

Fi(t) = - L Pi(r/; t)
1=1

k

= - L Pi(ti; t) - hp;(t/; t)
/= I

By the definition of Pi we have

Making the invertible, orientation-preserving change of variables
Yi= (t i - r;)J1i we have

Hence
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and so by the inverse function theorem F(t) is one-to-one for t near r. As
deg(F, Ak.so 0) = deg(F, Ak. so c) for c near 0, the degree is one.

Theorem 1 now follows. Lemma 5 and property (iii) of the degree give us
deg(F( .; 1), Ak. so 0) = 1. By properties (i) and (ii) of the degree combined
with Lemma 4 we conclude that the equation F(t; 1) =°has a unique
solution. Thus, by Lemma 1, Theorem 1 follows.
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