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Let N=3*%  (u,+ 1)+ X%  m;and let {u;}" | be an extended Chebysev system.
Let py, uy,.., i, be given odd positive integers and m,, m,, .., m, given even
positive integers with corresponding fixed nodes x; <x, < --- <x, in the interval
(a, b). If L is a positive linear functional on U=span{u;}~ |, we prove that L has a
unique representation of the form

o)=Y ¥ a,p |:x1, woey X3 X2y weny X2y veey Xy oory x,]

) Lol ol pai it Rt
i=1j=1 m m j

koo

+3 Y by [x,, ooy X1y X2y vees X2y vvey gy ceny Xigy L1y avey E1y vrey Lis oy t,]
Lolv e e iomlie oot

i=lj=1 m my mg w i

such that Q(p)=L{p) for all peU. Here a<t,<t,< .-+ <ty <b. The proof
combines use of the degree of 4 mapping with results from the theory of divided
differences.  © 1988 Academic Press, Inc.

I. INTRODUCTION

Given a positive linear functional L on an extended Chebysev system
U=span{u;}" |, Barrow [3] has shown that there exist unique nodes
{t;}%_, and coefficients {a;} such that the corresponding quadrature
formula is exact over the system; ie, X¢_, T4 ul(1;)=L(u) for all
ue U. Here {y;} are given odd positive integers and dim U=Y*_, (u,+1).
Such a formula is known as a Gaussian quadrature formula and has been
shown to be of maximal precision.

This paper concerns a generalization of formulas of this type. One is
~allowed to initially choose points x in the interval (a, ), and given the
preassigned multiplicities of these and the free nodes, a quadrature formula
is shown to exist.

In a departure from previous quadrature formulas, the divided difference
has been used in place of derivative evaluations. This is primarily due to
the fact that it is possible for free knots to combine with fixed nodes.
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However, as has historically been the case, the free knots remain separate
from each other as in [1], [2].

The following section provides background in total positivity, divided
differences, and topological theory which will be used in the proof of the
main theorem. The last section follows the basic outline of Barrow’s work
[3], proving the main result of the paper. As with the theorem of Barrow,
this formula is of maximal precision.

II. DEFINITIONS AND PRELIMINARY RESULTS

Let {p,}¥ ,eC""'[a, b] form an extended Chebysev (ET) system, i.e.,

=det{p(t)}V_, > whenevera<1t,<t,--- <ty<b.

PrPz2 " Pn
(2.1)

Here the “*” means that if some of the ¢,’s coincide, then the columns in
the matrix corresponding to coincident ¢;s are replaced by derivatives of
increasing order (see Ref. [5] for details).

A linear function L on U is said to be positive if whenever pe U is
nontrivial and nonnegative, L(p)>0. L is called nonnegative if L(p)=>0
whenever p > 0. It is shown in Krein and Rutman [67] that a nonnegative
linear functional on U may be extended to a nonnegative linear functional
on C[a, b]. Hence, by the Riesz representation theorem for the dual of
Cla, b] we may assume that L(p)= [ p(t) do(1) for all pe U, where g is a
nondecreasing right-continuous bounded function.

We now provide a brief discussion of divided differences, referring the
interested reader to Schumaker [7] for a more thorough treatment. For
the remainder of this paper we use the following definition:

Given points ¢, .., t,,; and a function f, define the rth-order divided
difference of f over these points by

D*l s r;’l
Sl s t,+1]—D—*l”TIL'. (2.2)

el
Here the “*” allows for coincident £’s as in definition (2.1).

We use the special notation V(t,, .., t,, ) for the Vandermonde deter-
minant D*|{-~“+)| . We have not specified the ordering of {¢,};*{ as in
fact it does not matter. The recursive nature of the divided difference will be
used often, i.e., given any points {z,}7*}, ¢, ., #1, (see Ref. [4]),

[l ton =10 ] (2.3)

Lo

f[tl; Tty r+l] =
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The continuity of the divided difference allows for the following fact: Let
L<L< - €t ., Fix 1<i<r+1 and suppose
h h ]

—atm

tl’ ey l,+l=T1, s Ty < Ty ey T2< e K Tgy ey Ty

Then

0 .
Lty oo Ly 1 3= L LTty s Ty oves Tis ooy Tiy vy Tty wen Tg fOT i=1,2,.. d.
(3‘[,» h L+ 7]

(2.4)

The correlation between the divided difference of a function and its
derivative values is often exploited. With {1,}¢_, as above,

d )
f[th"', tr+1]= Z Z aile-lf(Ti)a (2'5)
i=1 =1
where
I fi—1 Ia

. = V(Tl,..-, Ty ooy Tigveos Ty vees Tigysns Td)
K V(s o tyyt)

It is worthwhile at this point to note that the main result holds if we
replace this definition of the divided difference with the most generalized
definition (see Ref. {7, p. 81]).

The following is a discussion of the elements of topological degree theory
which will be needed:

Let D< R" be a bounded open set and let F: D— R" be continuous.
Then if ce R" and ¢ ¢ F(dD), where dD means the boundary of D, then the
degree of F with respect to D and c is defined, is an integer, and will be
denoted deg(F, D, c). We list below some of the relevant properties of
deg(F, D, ¢) [3].

(i) If FeCY(D)n C(D), c¢ F(éD), and det[ F'(x)] # 0 when F(x)=c,
then there are a finite number of points x;e D where F(x,) = c. Moreover,
deg(F, D, c)=%; sgn[det[ F'(x;)]].

(ii) If deg (F, D, ¢)#0, there is at least one solution in D to the
equation F(x)=c.

(ii) If F:Dx[0,1]— R" is continuous ad F(x,A)#c for xedD,
0< A<, then deg[F(-, 1), D, c] is constant, independent of A.

We now define the concepts which are necessary for the statement of the
main theorem:
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Let uy, 4y, ..., g be odd positive integers, m,, m,, ..., m, even positive
integers, and let

k s

N=Y (g+1)+ ) m,

i=1 i=1

Let U be an ET-system of order N and let L be a given positive linear
functional on U =span{p,}~ . When possible we will write

PUX, Fyy ooy Eiy vy biy ooy 8] FOT DX 1y ey Xpy ey Xigyoes Xy Eineeny Eps vony Lis vens £1]
Nt S R e e g i
Hi J my ms Kl J

to eliminate cumbersome notation.

Let A,eR* be defined by 4,={(t,,t5, - li)=tia<t;<t,<---<
1,<b}. Let 4, . R* be defined by 4, ,={ted,:|1,,—1;|>¢ for i=1,
2,..k—1}. Finally, let (a,b) = (a,,ay,, .., 1,5 Q5 Qagy v Ay oy A
by, by by, by s b, sees by, )

S,"J tl

III. GAUSSIAN QUADRATURE WITH FIXED NODES
This section contains the proof of the following theorem:

THEOREM 1. Let a<x < ---x,<b, {u}*_, and {m;}i_, be given as
above. Then there is a unique te d, ., where ¢>0 and there is a unique
coefficient vector (a, b) such that

Lip)= Y. Z a,jp[xl, ooy X1y vens Xy s X1

i=1j=1 j

+ Z Z b,p [xl, vy X5 erey Xy eeey Xigs Ly ooy Epyooms Ly oy 2] (3.1)

i=1j=1 - mg m j

for all pe U. The proof is based upon a series of lemmas.

Note. By Proposition 1 of Barrow [3] this formula is of maximal
precision.

LEMMA 1. Leta<x,<x,< --- <x,<b be fixed and let te 4, be given.
Then for i=1,2,..,s+k we define the “generalized Lagrange polynomials”
P;e U as follows: For i=1,2,.,5and j=1, .., m, define p,e U by

Pilxy, s Xiy oy Xpy s , =0 for (i,j)#(l, n),

my n
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where [=1,2,..,5, n=1,.,m,

P [X1, e Xy5 e Xy e X1 =1

my J
and

Py Xty iy gy ey 1]=0 for I=1,2, . k,n=1,.., u+1.

u n
Fori=s+1,.,s+kandj=1, .., pu,+1 define p;e U by
PilX1s s Xps s Xy s X, 1=0  forl=1,2,. 5,

my n

n= 1, reey m,
pilx.tis sty tyy o ,1=0 Jor (i,))# (I +s,n),
" g I=1,2, ..k,
n= 1, ooy ,u,[+1
and

Pilx, ty, sty ly gyt ]=1
ettt S
M j

Such a polynomial can be seen to exist and be unique by writing out the
N x N matrix equation which determines it. Let

a;=L[p(1)] for i=1,2.,sj=1,.,m;
by=LIpiys ()]  for i=12, ., kj=1,.,u,.
Then t and (a, b) satisfy (3.1) if and only if
L(pi 1 (58)=0  for i=s+1,.,5+k (3.2)

Proof. 1f (3.1) holds then by definition of p; ,+1 (+; t), the right-hand side

of (3.1) is identically zero for i=s5+1, ..., s+ k. Thus (3.2) holds.

Conversely, if (3.2) holds, then by the definition of the remaining N
functions P, ;, (3.1) holds for all P, ;. As we have a basis for U in these
functions, (3.1) holds for all pe U.

DerFmniTioN.  Fix a<r;<r,< --- <r,<b separate from x and define
Lo(p)=3*_, p(r;). Then for 0 <A< 1 define L,;(p)=ALo(p)+ (1 —A) L(p).

Remark. 1t is useful at this point to examine the functions
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Pi+s, m+1(+t) which we redefine as p,(-t) for i=1, 2,.., k. By Egs. (2.3),
(2.4), and (2.5),

PN x;)=0  for I=1,..,5j=0,1,.,m—1
PN )=0  for I#ij=0,1, .4 (3.3)
l(])(t[;t):o fOI‘ j=0, 13'"5 llz_l

and

“ e+
e,

|Z0. 5 PRI PR S t,-)>0'

V(X £y cony Epy vy Lig ooy 1)
KBS Ll
M ue

E#')(ti;t)=

LEMMA 2. Leta<x,<x,< -+ <x,<b, and {m;};_, and {u;}*_, be as
above. If t, and (a*, b*) satisfy (3.1) for 0< A< 1 there exists an >0 such
that t,ed, ..

Proof. Assume to the contrary that no such ¢>0 exists. Then there
exists a sequence " < 4, such that t" — te d4, as n — co. Without loss of
generality, we can assume that 7 - ¢,. Denote the corresponding sequence
by {4,}, so that as 4, > 1,€[0,1], 7>t and 5> ¢,.

Construct a sequence of polynominals p, e U such that

Pl X1y s X1y s Xy oy X1 =0, =12, ,m,i=1,2, .5
Ll RSN

ny J

PuLX, £ s 080 =0, i=1,2j=1,2, . 4

M J
PalXo s s €0y 01=0, =34,k j=1,2, e py+ 1
1 J

p@)=0,  p(a)>0, |p.lo=1

Then for each n, p, has a full set of zeros and is completely determined.
Since t" and (a’+, b*) give a formula (3.1) for L, , L, (p,)=0 for all n.
Define pe U by

PLX1s s X1y ey Xy o0y X1 =0, j=12,..m,i=12.,s
plx, ty,...1;1=0, J=1,2, 0ty + ths

PIX, by Eyyven by s 1,=0, i=3,4, .k j=12 ., u+1
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By continuity and Rolle’s theorem, lim,_, ., p,=p. By construction the
zeros of p are all even and thus p > 0. Notice that the possibility of ¢, = x;
for i=1,2,.. 5 will nevertheless produce a zero with even multiplicity.
Therefore, p >0 and so L, (p)>0. y

However, by construction of {p,}, L,(p,)=0 for all n As
lim, L, (p,)=L,(p) by the continuity of L,(p), we have the desired
contradiction.

Let ¢ >0 be as in Lemma 2. For te 4, ,, let p,(-; t) e V be the polynomial
pi+1(5t) of Lemma 1. Define the map F:4,, x[0,1]—>R* by
Fit; A)= —L;,[p(+t)]fori=1,2,.., k Then F is continuous in (t; 1) and
Lemmas 1 and 2 imply that F(t; 1) #0 if te 84, ..

We need the following fact in order to compute 9D/ot.

LEMMA 3. For L <m<k, and p,,( -;t)e U defined as above,

k Hi
b, Vo+ Y Y by(—1)E=mermrivlpms g (34)
i=m+1j=1
where t and (a, b) satisfy F(t, )=0 for 0 <1< 1. We define
M1 Hm— 1

- VX, t1y iy Ly oy Ly ooos I

m_
| 205 7 P S

Hy Hm
and
m Hm— 1 J
" s, et ———~,
_ VX, Eyy ey By coey Iy eons Loy vy Liy woes Li)
SEAES 70" SR SR U SO SN )

H Hm J

Proof. For 1 <I<k construct g, € U by

pY(x,)=0, i=1,.,s5j=01,.,m—1
ﬁg)(t’)=0, l¢m,l=1” k’jzoa 1, seey ui
p‘Erjx-)(tm)=0’ J’__Oa 1, ey ”’m_z

plm—U(z, y=p¥n)(t,)>0 as defined in Lemma 1, see Egs. (3.3),
pm(@)=0 and  |p,l.,=1

If t,= x; for some i, j, replace p; by m; + u,.

Then by construction p has N—1 zeros, and as the interior zeros are all
even, p,,=0 on [a,b]. We will now show that Q(p,,) is exactly (3.4),
which must be strictly positive by the nature of p,,.
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By construction p,,[x;, . Xi5 e X; 0 X;]=0 for i=1,2,..,5 and

my J
j=12, ., m, Similarly for i<m,
i—1 pp—1
Pl X, by by o t]_ Y Z gy DVp,(15)
a0 Ty =11=0

Z DOp(t)=0  for j=1,.,pu

For the case i=m, by (2.2), Pml[X, 115 s L5 cos Ly - Ly ] €Quals

Hi J

110 1 0 c-vvns 0

0 - 08,(t,) P (1) PY " V() =0  for j=1,.,u,—1
| 0. S YR U S |

H T
and equals
“ul Hm—1
Vix, t ! t t,)
A(”m_l)(t ) £ 19 = 1y eoes m? "y 'm for j=ﬂ .
m m m
VX, By ooy B1y oy By voes Bg)
N’ R e
H1 Hm
For i>m,
| B | BT 0

0 -0 (t,,) - plr) YV (1)

VX, by, s By oy Ly s 1)
151 Jj

= plm (g, W= 1) Eamem L ym for =12, p
Therefore as Q(p,,)= L(p,,) >0

k Hi it K
Q(Pm)=bp, P4 V1, VE+ 3 X bypn e, (— 1) Ee=mnriat Y

i=m+1j=1

>0 for j=1,2,.. 4,

As plm—1(g, y=plm(¢, ) >0, the result is shown.
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LemMA 4. If t and (a, b) satisfy F(t, A)=0 for 0< A< 1, then

oF
det— (1, 1)>0.

Proof. As in the work of Barrow [3] we compute the difference
quotient, omitting reference to A. The determinant definition for the divided
difference seems to give the greatest insight into this computation.

Let |h| be small and e, = (1,0, ..., 0) e R*. Then

Fy(t+he,)— F\(t)= —L(p,(t+he,))

ms Ui
= - 2 z ljpl[xl’- B ST TN xi;t+hel]

i=1j=1 ml J
— Z Z bypi[x, tl,... R SR SRS S T
i=1j=1 j

By the definition of p,, the first set of sums is zero. We break up the
second sum at ¢, to obtain

m—1
Fi(t+he)—F ()= — Y byp[X 11, tl’t+hel]
j=1 j+l
k ui—1
- Z Z bupl[x tl"" weny tf’ veey l,;t+h81].
i=2 j=0 j+1

Forj=1,2, .., u,,
pibx, Ly, by t;t+ he,}
i

110 -+ 0 1 +vn-.. 0 e 0

1(xy) - 'pgmxvl)(xS)Pl(tl;t*'hel)"'p(lj_l)(tl;t*'hel)r .
VX, 2y, .. 1))

J

Using Taylor’s theorem we expand p,(x;t+he,) about t+he,. We
define
pY (e, t+ hey)
Aj— p

. A A (_h)m—j ]
= plud(¢ ;t A, h—J
P, + + el)(#l—'j+1)!+0( )
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so that

lim p,[x, t;, .., t;; t+ he,]
P Lot
J

10..-10..-0

=lim [0 --- 04,4, 4

h—0 4

V(xa tls ey tl)

J
We note that

lim A = for j=1,2,.,pu,—1
heo T =pi () Ve for =

For the second set of terms in the sum, we use the fact that
py= (¢t t+ he)=0 for j=1,2,.,u;, and i#1. This leaves the only
nonzero clement in the last row of the corresponding determinant of
—p*(t,;t). Thus for i=2, ..,k and j=1,2, .., y;,

lim ’% (X, £1s oo 1y o Ly o £y 4 e ]

h—>0 e N—

Bl J
= (= DX (—p (15 0) Vi,
where the sign is contributed by the placement of p!*! in the last row. Thus
p i

oF
ﬁ=blmp‘{‘” (t1;8) Vg
ko pi )
+ Z Z b,-jp(;“')(h;t) V}j(_l)(}:’:;'zuz)ﬂﬂ'
i=2j=1
One obtains 0F,/0t; similarly for i=2, 3, .., k. Moreover, by construction
p#(¢;;t)=0 for i #j and therefore the off-diagonal elements vanish. Thus,
in light of Lemma 3, the result is shown.

LeMMmA 5. Deg(F(-0), 4, .,0)=1.

Proof. For the remainder of the lemma set 4 to zero and delete any
further reference to 1. We follow Barrow [3] by first showing that the only
solution to F(t)=0 is r and then show that F(t) is one-to-one for t near r.
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Then Fft)= —Lo(p.(;t))= —X%_, pAr;;t). By the definition of p,,
F(r)=0. Suppose that there exists another solution, say s, so that F(s)=0.
By Lemma 1 let s, a be the corresponding formula (3.1) for L.

Then without loss of generality we assume that r, s, and construct
pe U as follows:

p[xl, vy Xy vy Xy ooy X1 =10, i=1,.,5j=12,.,m
\'\'/"/
ml J

PLX, 81y ey Sps ones Spy ey 5,1 =0, i=L2.,kj=12 ., u

i J
p(r;)=0 i=2,3, ..,k
p(ry) #0.

Then by (3.1), Lo(p)=0, but Ly(p)=p(r,)#0, a contradiction.
Therefore r, =s; and similarly one shows r =s. We now compute 0F/ot for
t near r to show that F is one-to-one near r.

For t near r, letting A=r,—1¢,,

k
t)=— z pirit)
[=1

k
==Y plts)—hpft;t)
I=1
(w—1) ()
h 1 pf#l l)(tnt)_hp
(= 1) B!

(1) + o(h*).

By the definition of p, we have

(p4)

F{t)=— + Z o((r;— 1,;)").

1‘ 1,“ =1

Making the invertible, orientation-preserving change of variables
y;=(t;—r;)* we have

F(y)= “" V —+ Z o(y)).

Hence

0F(o) . ( 1 1 )
=dia, y
ady & m!Vy, ! Vi
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and so by the inverse function theorem F(t) is one-to-one for t near r. As
deg(F, 4, ., 0)=deg(F, 4, ., c¢) for ¢ near 0, the degree is one.

Theorem 1 now follows. Lemma 5 and property (iii) of the degree give us
deg(F(; 1), 4, ,, 0)=1. By properties (i) and (ii) of the degree combined
with Lemma 4 we conclude that the equation F(t;1)=0 has a unique
solution. Thus, by Lemma 1, Theorem 1 follows.
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